Exercise 34

For the following exercises, solve the equations over the complex numbers.

$$
x^{2}+6 x+25=0
$$

Solution

The two terms with x, x^{2} and $6 x$, cannot be combined, so it's necessary to complete the square to solve for x. Recall the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=6$, which means $B=3$ and $B^{2}=9$. Add and subtract 9 from the left side and apply the identity.

$$
\begin{gathered}
\left(x^{2}+6 x+9\right)+25-9=0 \\
(x+3)^{2}+16=0
\end{gathered}
$$

Now that x appears in only one place, it can be solved for. Subtract 16 from both sides.

$$
(x+3)^{2}=-16
$$

Take the square root of both sides.

$$
\begin{aligned}
\sqrt{(x+3)^{2}} & =\sqrt{-16} \\
& =\sqrt{16(-1)} \\
& =\sqrt{16} \sqrt{-1} \\
& =4 i
\end{aligned}
$$

Since there's an even power under an even root, and the result is to an odd power, an absolute value sign is needed around $x+3$.

$$
|x+3|=4 i
$$

Remove the absolute value sign by placing \pm on the right side.

$$
x+3= \pm 4 i
$$

Subtract 3 from both sides.

$$
x=-3 \pm 4 i
$$

Therefore, $x=\{-3-4 i,-3+4 i\}$.

